Freeze Frame Diagnostics -

Freeze Frame Diagnostics

Freeze frame data is a “snap shot” of when the code occurs of the specific sensor PIDs.

Article courtesy UNDERHOOD SERVICE.

More than 20 years ago, automakers and the EPA developed the standard that we know today as OBDII. This standardized many of the onboard emissions protocols and codes and allowed states to perform onboard emissions testing. For technicians, it opened a whole new world of diagnostics. As time passed, even large trucks and motorcycles adopted this same method to test the emissions status of a vehicle.

As part of OBDII, Mode$02 for the logging of freeze frame data was created. This diagnostic protocol saves data PIDs and information when a code is set. In 1995, freeze frame gave technicians a powerful diagnostic tool that was previously only available on expensive factory tools – and it’s still useful today. 

What is Freeze Frame Data?

Without going into details concerning the types of codes and monitors, freeze frame data is a “snap shot” of when the code occurs of the specific sensor PIDs. In general, the newer the vehicle, the greater number of PIDs in a freeze frame. These PIDs focus on the how the engine burns fuel and manages emissions. You will not find data for the variable valve timing or other devices that might be unique to the manufacturer. 

Chances are you have a scan tool that offers specific make and model coverage and generic/global OBDII. But, in some cases, the fastest way to get to the bottom of a check engine light might be to access the vehicle with generic protocols.

Most engine control modules store only one freeze frame record per code. The freeze frame data is stored when a test fails or a DTC is set. The freeze frame is not updated with current values. If the code P0171 for bank one is too lean, and if the criteria for the code are set again, it will overwrite the previous freeze frame data.

What is contained in freeze frame data?

On some vehicles, the freeze frame data is limited to data PIDs focused on a narrow set of values that determine the fuel system performance and emissions. These can include rpm, fuel system status, calculated engine load, readings of absolute pressure,  readings from the MAP sensor or MAF sensor, spark advance, throttle position, coolant temperature, long- and short-term fuel trims, vehicle speed, voltage,  MIL status, EVAP status  and EGR status.

Depending on the vehicle and code, the amount of information can vary. But there are several key pieces of information you need to look for:

  • What was the vehicle doing at the time the code was set?
  • What was the coolant temperature and fuel system status?
  • Did the problem occur at idle or under load, and at what rpm?
  • What are the fuel trims, and what are the differences between the short- and long-term?

From this information, you can replicate the problem on a test drive faster. Other information can include vital “nuggets” of information like battery voltage, fuel pressure and EVAP status that can point you in the right direction faster than just going on the code alone. 

Limitations of Freeze Frame data

The main limitation of freeze frame is it captures only when the code triggered and not the events that occurred before or after. Also, freeze frame data is limited to standardized codes and there is typically never freeze frame information for body or chassis codes. 

Freeze frame data does not stay around forever. If a scan tool clears a code, or the code is cleared due to prerequisite number of trips or drive cycles, the freeze frame data might be erased.

You May Also Like

Understanding Differences Between Aluminum And Cast Iron

Sheer material differences aside, what are the features and benefits of aluminum and iron engine components?

It doesn’t take a rocket scientist to realize that the rising cost of raw materials and supply chain disruptions over the last few years would transform our industry. However, we never envisioned the sudden demand for billet blocks to surpass that of cast iron or aluminum. The cost of cast aluminum blocks are creeping ever closer to that of their billet counterpart, therefore the additional expense is now a reasonable and practical upgrade for our racers. 

Battery Charging and Programming Diagnostics

Temperature changes how the battery discharges and the amount of current that can be delivered.

Adapting Sensors For Changing Inputs

Let’s focus our attention today on one small facet of the technology inside modern vehicles: Adaptations.

Ignition System Do’s and Don’ts

Why do ignition systems give technicians problems when diagnosing ignition-related misfires? The answer is that some technicians use tests that might give inconclusive results or do damage to the coil or drivers inside a module.

Belt Service For Hybrid and Stop/Start Systems

Knowing how to “force start” a hybrid vehicle can be helpful if you are trying to diagnose a noise problem that involves the accessory belt drive system.

Other Posts

Topology and Your Scan Tool

Topology influences how you access the modules with your scan tool.

Mercedes Ignition Coil Pack Diagnostics

Replacing a single coil might not be the best approach to curing an engine of a chronic misfire.

Ball Joint Inspection

It’s important to remember not to miss a worn joint. If a ball joint fails, the driver loses control of the vehicle.

Fuel Pumps and Cranking

Diagnosing the problem comes down to understanding what causes a loss of fuel pressure.