GM Tech Tip: Torque-To-Yield TTY Fastener Use And Reuse -

GM Tech Tip: Torque-To-Yield TTY Fastener Use And Reuse

A fastener with a torque + angle specification must be tightened first to the torque part of the specification and then tightened further by the addition of the specified angle. The angle must be applied relative to the mating fastener.

torque-wrench-500
The desired result of tightening a fastener is to obtain a proper clamping force between parts. The clamping force prevents loosening when the vehicle is in use and external forces act on the clamped parts. All fasteners have a specified torque. The method used for a particular application is determined by engineering and specified in the service information. It is necessary to apply the fastener torque to the specific fastener identified. Applying torque to the mating fastener can damage the fastener, mating components or provide insufficient clamp load.

There are three different methods for the specification of tightening fasteners:

Torque (T)

Torque + Angle (TA)

Torque + Angle-to-Yield (TAY) (sometimes referred to Torque-to-Yield (TTY)).

Torque

A fastener with a torque specification can be tightened with a conventional torque wrench. Generally, externally threaded fasteners (bolts, screws, studs) tightened to this specification method can be reused unless otherwise specified in the service information.

Torque + Angle

A fastener with a torque + angle specification must be tightened first to the torque part of the specification and then tightened further by the addition of the specified angle. The angle must be applied relative to the mating fastener, if present, or relative to the mating surface. A backup wrench must be used, if required, to prevent the rotation of the mating fastener while the angle is added to the fastener with the torque + angle specification. Generally, externally threaded fasteners tightened to this specification method can be reused unless otherwise specified in the service information.

Torque + Angle-to-Yield

A fastener with a torque + angle-to-yield specification is tightened in the same way as the fastener with the torque + angle specification. The difference between a torque + angle specification and a torque + angle-to-yield specification is that the tightening results in permanent deformation of the externally threaded fastener. Externally threaded fasteners tightened to this specification method must not be reused and must ALWAYS be replaced if loosened.

Tightening in Stages

Generally, service information specifies a fastener tightening specification in stages. An individual fastener with a torque specification is tightened to the specified torque in one pass.

For torque + angle and torque + angle-to-yield specification fasteners, the fasteners are tightened in stages. All the fasteners are tightened to a torque specification on the first pass. Next, they receive another tightening to a specified angle on the second pass. Sometimes more than two passes are required. Always refer to the appropriate service information for proper tightening in stages.

On applications with more than one fastener, such as wheel nuts or cylinder head bolts, the fasteners should be tightened to specification by alternating between the fasteners to ensure the parts are not distorted and that the fasteners are torqued evenly. Once a specified minimum of torque has been achieved for each bolt, the bolts should be tightened completely to specification.

Reusing the Fastener

Think of an externally threaded fastener (bolt, screw or stud) as a spring. As the threads are tightened, the spring is stretched. With a conventional torque or torque + angle tightening specification, the spring returns to its original length when loosened. In the case of a torque + angle-to-yield tightening specification, the spring is overstretched (plastically deformed) and does not return to its original length. For this reason, the torque + angle-to-yield tightening specification requires the externally threaded fastener to ALWAYS be replaced.

Courtesy of Mitchell1.

You May Also Like

Are Modern Cars with ADAS Really Safer?

Studies suggest that ADAS technologies can significantly reduce the likelihood of accidents and injuries on the road.

As an automotive enthusiast and a safety advocate, I’ve always been intrigued by the advancements in driver assistance systems. Advanced driver-assistance systems (ADAS) have taken the automotive industry by storm, promising to make driving safer and more comfortable. But are modern cars with ADAS safer? Let’s dive into the world of ADAS and find out.

7 Brake Myths Busted

There are some myths about brake pads, rotors and hydraulics that need to be busted.

Are Today’s Colors Harder to Match?

It appears we’re dealing with the most unique and difficult colors in the history of car painting … or are we?

Turbocharger Topics

Turbochargers have made a comeback – and it’s been quick.

Transmissions – CVT

Knowing what the common issues are & understanding the options available to isolate & fix problems are the keys to success.

Other Posts

Fuel Pumps and Cranking

Diagnosing the problem comes down to understanding what causes a loss of fuel pressure.

Wheel Bearing Service Tips

When faced with any noise complaint, take the time to test-drive the car.

Navigating the Intricate Landscape of Coatings and ADAS

With refinish and ADAS, the theme time and time again comes back to: check the OEM repair recommendations.

Proper Paint Prep: Cleaning and Abrading

Nothing is faster or more profitable than doing the job one time.