Learning Align Honing from Joe the Pro -

Learning Align Honing from Joe the Pro

Adapted from Doc Frohmaders article in Engine Builder

Among the most common ways to improve the bottom end of any engine is to make sure the main bores are straight and at the proper spec for diameter and shape. The machine operation to correct any defects is called align honing. Its a job requiring good knowledge of what you want to accomplish, how to get there, and experience with the equipment that allows you to make mid-course corrections and adjustments to get the perfect job done. When you do it well, its a sign youre the right machine shop to perform operations that will keep your customers engines running when others fail. The engine used in this article is a good example of the process. It was align honed at one shop and then, due to some problems and the embarrassment of the owner, shipped to another to get it re-done. The first shop (name withheld) managed to machine the main bore at one end a full two thousandths larger than the other. Given the tolerance is two TENTHS of a thousandth for this kind of work, its understandable that the block had to go to Dependable Machine in Overland, MO, to be finished properly. There, Joe Simon took over and did the job youll see here.

Figure 1-5

Figure 6-11

Figure 12-15

Grasp an Understanding of Honing Principles
If you dont know what to expect and how to tell if its right, how will you catch bad work before its too late? Thats why it makes sense to have enough knowledge to do a great job and to cover your butt.

It turns out this block had most of the problems you can face. First, the main bores were not within spec. They should all be the same and within the range given by the bearing manufacturer. In this case, the main bore diameter is shown to be 2.9370 to 2.9380. Most machinists will shoot for the center of this range and end up with 2.9375. The maximum tolerance allowed is .0002. Starting from the front, this block read 2.9380, 2.9375, 2.9375, 2.9370, and 2.9360. Ouch! When Joe was done, all mains measured up at 2.9375. However, before this could be done there was another problem. The #2 and #3 main caps did not register properly in the block. What this means is that where the caps fit into the notched area of the block on either side, there was clearance instead of a snug fit. It is important to have a good tight register because this keeps the caps from walking around side to side. A loose cap exaggerates the problem of crank stability and can mean early failure.

Three Solutions For Snug Fit

  1. Solution one includes using a flat, blunt chisel and hammer to slightly move the metal of the block register inward. This is common practice and, if done carefully, is acceptable.

    NOTE: NEVER, use a punch or other sharp object as this creates stress risers and could result in a cracked web.

  2. Another way is to knurl the cap sides. I dont care for this as the result is less than full metal-to-metal contact and much less strong and stable.

  3. A third way is to replace the cap. Replacements are available for many engines. The one we chose was to select from a large supply of used caps for replacement that was both tight and close to the same profile inside diameter. Joe tried about 20 different caps until he found the best initial fit. When the honing is done it, will correct any small discrepancies.

Worn Threads
Another problem we found was that the bolts did not fit the threads smoothly. When you torque the mains down, the specs rely on clean threads without burrs or defects and bolts to match. The threads were dirty so Joe cleaned them with a small stainless steel round wire brush chucked into a drill motor. The brush threaded in and out, removed all the gunk and left the threads intact. The bolts were used (stock engine grade) and it was apparent they were not in prime shape. So, we replaced them with new high performance bolts as should have been done at first, and used the recommended lube on both threads and washer faces to get the correct torque readings.

At this stage, the caps were all trimmed to the same height so we started with similar rough bores and allowed the honing to create a good, round, properly-sized set of main bores all aligned on the same centerline. Its important to have the caps the same dimension so the starting place is about the same when the hone is engaged.

Honing Breakdown
Honing consists of running a long bar hone through the mains in a controlled manner so all caps get the same cut. The trouble is that not all mains have the same surface width under the bearing shells. This often results in the hone leaving one main a little larger than the others. Small changes in design or metal consistency can also cause this. Further, if the block is honed from just one end (which was probably the case with the first shops work) you get ascending or descending bore diameters from one end to the other.

Solutions to this effort at standardizing the bores and coping with different cut rates include honing from one end and then switching to hone from the other end. The honing is done in short steps and bores are measured after each cut to determine just exactly how the hone is performing. That allows you to adjust as needed. Another trick is to loosen a cap if you want to reduce the cut on it while cutting the others. If when measuring you discover one bore diameter is increasing too fast, you loosen it, leaving the others torqued tight and the cut rate slows on just that bore. When the others are brought up to the same level, you finish with all caps torqued.

Appearances also can be deceiving. For example, you may find the parting line area of the block and/or cap appears not to be honed. This is both common and acceptable. If you think about it, what it means is material was removed only where needed. The critical areas are at the top and bottom of the bores where the vast majority of stress is concentrated. If an already correctly sized bore (side to side) is increased while the top-to-bottom dimension is increased by honing, you would end up with an oval bore that cant be repaired.

Perfect Shape
Shape is important. While its OK to have the metal untouched at the parting lines, you want the bores round. Measurements are taken side to side as well as top to bottom to verify this. In addition, the bores are measured both at the front of the bore and at the rear. This will verify the bore is not tapered end to end. Checking at three points, (front, center, rear) will tell you if the bore is barrel-shaped.

What you want, and what Joe did so well, is to get the bores all defined as rings with consistent diameters, no barrel or taper, all along the same centerline from front to rear and all at the same diameter. This will mean the bearings will all fit with proper crush, clearances around the entire circumference of the bearing bores will be consistent, and no stress from improper alignment will contribute to failures. Trust me, its definitely worth it to get this aspect of engine building right.

You May Also Like

AAPEX Named One of 50 Fastest-Growing Shows in 2023  

This is the second consecutive year that AAPEX earned a spot in TSE’s Fastest 50 Class.

Trade Show Executive (TSE) has recognized AAPEX as one of the 50 fastest-growing trade shows that took place in the United States in 2023, marking the second consecutive year for the event to earn its place on TSE’s Fastest 50 Class. 

AAPEX 2023 made the Fastest 50 honoree list in two categories: Net Square Feet of Exhibit Space and Exhibiting Companies. The event had a sold-out show floor and welcomed more than 2,600 exhibiting manufacturer and supplier companies representing 42 countries.   

TOPDON USA Makes $25,000 Donation to TechForce Foundation

TOPDON has donated over $66K to aid organizations & schools that are dedicated to preparing the next generation of technicians.

DENSO, Manufacture 2030 Partner to Improve Sustainability

DENSO’s targets include reducing the carbon outputs of its global supply chain by 25%, by the 2030 fiscal year.

BBB Industries Releases Corporate Sustainability Report

This year, BBB set a goal to decrease its scope 1 and scope 2 emissions by 50 percent before 2027.

Bendix Releases Technical Materials for ADAS Support

They are designed to help technicians properly set up, inspect, and diagnose several components integrated with ADAS.

Other Posts

Continental Celebrates Expansion in South Carolina

The 90,000-square-foot-building has capacity for 350 employees and is designed and built for future expansion potential.

Dana to Participate in Easter Jeep Safari 2024

The event will take place in Moab, Utah, March 23-31.

MEMA Applauds EPA on Light- and Medium-Duty Emission Standards

MEMA says the EPA final rule includes an amended and more comprehensive analysis of technological alternatives.

ZF Aftermarket Releases 80 New Parts

The latest additions expand coverage to more than 5 million vehicles in operation.