Variable Displacement Oil Pumps – The Future Of The Oil Pump Is Here

Variable Displacement Oil Pumps – The Future Of The Oil Pump Is Here

Achieving those fuel efficiency numbers while also increasing the power to the wheels is the holy grail of vehicle engineering, and new variable displacement oil pumps are able to deliver this boost in efficiency.

oil-pumpAdapted from Andrew Markel’s article in Underhood Service.

 

Almost every major OEM has an engine or engine family that uses a variable displacement oil pump that is controlled by the ECM to deliver the best possible pressure and efficiency.

When it comes to improving fuel efficiency, 3% to 5% are huge numbers. Achieving those fuel efficiency numbers while also increasing the power to the wheels is the holy grail of vehicle engineering, and new variable displacement oil pumps are able to deliver this boost in efficiency.

Older fixed-displacement oil pumps worked the same regardless of the oil viscosity or demands of the engine. Engineers would oversize the pumps to handle the harshest engine operating conditions. They operate at peak performance, and it’s up to the pressure regulator to bleed off the excess pressure. This excess pressure that is bled off is wasted energy.

Variable displacement oil pumps control how hard the pump works by matching the pressure and volume to the conditions. These conditions can include engine temperature, loads and engine speeds.

Another advantage to controlling the oil pressure and volume is heat management. By regulating the flow of the oil, heat transfer can be optimized in the head and in the pistons. On turbocharged motors, oil flow control can reduce the formation of carbon deposits.

6-2l-lt1-oil-pump-dual-dry-sump
A standard feature in the Cruze’s Ecotec 1.4L turbocharged engine, the variable displacement oil pump reduces the displacement during engine warm up and high-speed conditions. The volume of oil from the pump varies with rpm by changing the pump’s displacement through a pivoting control chamber mechanism and sliding vanes. A fixed displacement pump would typically bypass the extra oil internally.

Diagnostic Component Perspective

A variable displacement oil pump system is more than just a pump. Six components play an active role in calculating the performance of the pump.

  1. Oil

Modern vehicles know their oil, or at least the oil specified by the manufacturer. Vehicles know what the viscosity and flow characteristics should be because that information has been programmed into the ECM. They know that someone installed 10W-30 when it really needs 5W-20 because it affects how the pump performs.

The wrong oil can set off codes because the ECM knows what the oil pressure should be for a given engine speed and coolant temperature. If the numbers do not match, it will set a code and put the engine into a reduced power mode.

 

  1. Pump Type

Almost every variable displacement oil pump application is mounted on the crankshaft. This placement eliminates the need for an intermediary shaft that can fail.

Variable displacement pumps are “gerotor” designs. Gerotor pumps have trochoid gears that allow for smooth operation, low noise and excellent suction. The centrically seated drive gear drives an external eccentrically seated annular gear. The result of which is cavities inside the pump that compress and enlarge to create the suction and feed effect.

The inner rotor sits on the crankshaft and drives the outer rotor. Since the inner and outer rotors have different rotating axes, more space is created on the suction side due to the rotating motion. The oil is drawn in and transported to the pressure side. On the pressure side, the space between the gears’ teeth becomes smaller again, and oil is forced into the oil circuit under pressure.

A variable displacement oil pump changes the rotating axis of the outer gear. To achieve this, the gears of the inner rotor are replaced with variable-length vanes. The outer gear pivots on an axis; opposite the pivot is an electronic actuator. On mechanical versions, a spring replaces the actuator and the opposite side of the housing has oil or a piston that pushes against the spring to regulate pressure.

gm-variable-displacement-oil-pump
The GM LT1 uses a variable displacement oil pump that enables more efficient oil delivery, per the engine’s operating conditions. Its dual-pressure control enables operation at a very efficient oil pressure at lower rpm coordinated with AFM and delivers higher pressure at higher engine speeds. Extra pressure can be requested from the pump for the oil jets on the pistons. The oil jets are used only when they are needed the most: at start-up, giving the cylinders extra lubrication that reduces noise, and at higher engine speeds, or when the engine load demands, for extra cooling and greater durability.
  1. Actuator

Most variable displacement oil pumps use an electric solenoid to change the axis and eccentricity of the pump housing, and position is determined by the ECM. Changing the geometry of the housing changes the amount of pressure and volume of the pump. Most actuators use a pulse width modulated signal to control the position of the actuator, and some scan tools can display the PID for the actuator position.

 

  1. Oil Pressure Sensor(s)

Oil pressure sensors on most variable displacement oil pump systems are positioned in the oil galley between the main bearings and the head. Pressure sensors measure the overall pressure in the system, not just the pressure produced by the pump. If there are any problems like restrictions or internal leaks, the sensors will show incorrect readings, so solve these problems before replacing the pump.

 

  1. Engine Oil Temperature

On most vehicles, the oil temperature is calculated using various sensor inputs, not a direct sensor. The engine oil temperature calculation is a range of values, with a low value indicating when the oil temperature is low and a high value when the oil temperature is high. On vehicles with variable displacement oil pumps, oil temperature plays a critical role in calculating the actuator’s position during cold start up.

 

  1. ECM

The ECM looks at data including engine coolant temperature, engine load, calculated oil temperature and other monitors to determine the position of the oil pump actuator and oil pressure. If the system detects an overheating condition or a problem with one or more of the inputs, it may put the system into a reduced power mode to prevent damage.

Years ago, diagnosing a low or high oil pressure problem was simple – it was either worn components or the pressure regulator was damaged. With variable displacement oil pumps, the game has changed. You must look outside of the oil pan at the entire system to determine the problem and solution.

 

You May Also Like

Differences in Brake Fluid Matter To Cars – And Owners

Though DOT 3, 4 and 5.1 brake fluids are technically compatible with each other, when mixed, fluid properties can change.

Trying to match the brake fluid to a product that is available can quickly have your head spinning when trying to service a late-model BMW, VW or Mercedes. Finding the correct specification can be ambiguous because some manufacturers provide a part number instead of a specification in the service information or owner’s manual. Brake fluids can have several confusing names like LV, Super or DOT 4 Plus.

Brake Hardware

Specific hardware does not do its job if it is left in the box.

Throttle-By-Wire Diagnostics

On older throttle cable systems, the carburetor or fuel injection system reacted to the throttle angle.

Spotting Brake System Failures By Inspecting The Old Pads

The main culprit of friction material separation is typically corrosion.

Diagnostic Strategies For Stop/Start Systems

This function of the power management system uses several modules to decide when the engine needs to stop and start.

Other Posts

Brake Pad Ecology

The leading source of particulate emissions come from brake pads and tires.

Lightweight Brake Components

Engineering teams have certain goals that they need to meet or exceed.

Power Steering Pull

Every driver has a different threshold for a pull.

Fuel Pressure Diagnostic Service

Use a scan tool that can look at special direct fuel injection parameters and perform bidirectional tests.