Air Ride Suspension Diagnostics

Air Ride Suspension Diagnostics

The key to understanding the embedded logic of air ride systems is using service information.

Air ride systems can control vehicle ride height, passenger comfort and improve handling. How they operate and work with the rest of the systems on the vehicle is part of their control system’s embedded logic. There are three main edicts written in this programming: preserve the compressor; keep the vehicle level; and keep the vehicle safe.

Save the Compressor, Save the System, Save the Driver

If a system has a leak, the compressor will have to work harder to keep the vehicle at the same ride height, and gets hotter the longer it has to work. Excess heat can cause premature wear of the piston rings, and, if the leak goes unchecked, it can cause the compressor to fail completely. When the pump fails, oil and metal debris can enter into the valves, reservoirs and bladders.

The computer module controlling the pump keeps track of how long the compressor has run and how long the correction should take. If a correction to ride height takes too long, the system knows that the compressor could overheat, so it can set a code and then disable the pump before it’s damaged.

Almost every air ride vehicle has a self-diagnostic process that occurs during startup. On some vehicles, if the self-check detects a problem, it will disable the system or put it in a fail-safe mode and alert the driver. It will also set a soft or pending “C” (chassis) code.

The check does a bias voltage check – a quick voltage signal applied to the circuit that needs to come back at a specific range. If a solenoid has a damaged coil, the decreased or increased resistance will cause a code. Some systems will do a quick actuation of the suspension to see if the solenoids and valves are functioning. The module will also look at the pressure in the reservoir or compressor run time to verify system integrity.

Vehicle Leveling Logic

When the air ride system detects a substantial change in position due to a load, its preprogrammed logic makes the right correction by taking into account vehicle key position, amount of movement and other information.

If the key is off, some systems may wait 10 seconds before making a correction, while some may wait until the vehicle is started. Most systems will limit compressor run-time with the key off to preserve the battery. If the vehicle is running, corrections to the ride height are smaller and more targeted at tuning vehicle attitude.

Keep the Vehicle Safe

Most intelligent air ride systems use information from the ABS and electronic stability control (ESC) system, like vehicle speed, yaw and driver inputs. If there is a problem with the air ride system, the vehicle knows the lack of body control will impact stability.

Late-model air ride systems are incorporated on the serial data bus. They can use different inputs from other systems to determine the correct position of the suspension, which can include vehicle speed, engine load and other PIDs. Likewise, the air ride module shares data with the other modules on the serial data bus. A simple failure of a door switch can prevent the system from working on some vehicles.

Rather than letting the vehicle rest on the bump stops with the compressor running non-stop, the air ride system will disable or set the suspension at a safe pressure. The vehicle will then alert the driver with a warning on the instrument panel. Some air ride systems even limit the speed of the vehicle until the problem is resolved.

Information is Key

The key to understanding the embedded logic of air ride systems is using service information, which for most vehicles is included in the “system description and operation” section. Some OEMs include tests in the service information that can pinpoint faults.

Some OEMs also have released new calibrations and programs that can be “reflashed” onto the control module. They can help to eliminate excessive

You May Also Like

ABS/ESC False Activation Diagnostics

False activation incidents involve the ABS modulator taking over braking or intervening to restore vehicle stability.

The 2012 model year marked the first year electronic stability control (ESC) became a standard feature in vehicles. The government calculated that it would cost less than $400 per vehicle. 

The reason for the extra cost was the additional sensors to measure the yaw and lateral acceleration. With changes to the software in the ABS module, stability control could be applied to most cars and trucks.

Audi Alignment & Calibration

As models get more luxurious, features like air suspension and adaptive cruise control can make the alignment more complex.

Brake Rotor FAQ

Here are the answers to our frequently asked questions regarding brake rotors.

Adjusting Parking Brakes

You should never estimate when it comes to parking brake adjustments.

Installing New Rotors

Knowing if and why there’s runout will help you reinstall a smooth braking system.

Other Posts

Integrated Wheel Ends

The leading cause of IWE failure is water finding its way into the vacuum lines under the hood and in the wheel well.

Struts and Memory Steer

Here’s how to recognize when a vehicle is exhibiting signs of memory steer.

Limited Slip Differential Fluid Service

There are several differential designs you might see in the field.

Wheel Speed Sensors and Bearings

The only way to diagnose the sensor and circuit is with a scan tool or scope.