With Turbochargers, Maintenance Matters

With Turbochargers, Maintenance Matters

Turbocharged engines need high-quality oils and attention to maintenance intervals.

Turbochargers have been around almost since the first engines were invented. A Swiss engineer named Alfred Büch is often considered the father of the turbo with his 1905 patent for a compound radial engine with an exhaust-driven axial flow turbine and compressor mounted on a common shaft. Early turbos were mostly designed for airplane applications to help them fly at higher altitudes without stalling.about:blank

An exhaust-driven turbine wheel spins a compressor wheel to ram more air volume into the intake manifold, producing as much as 25% or more power than a naturally aspirated engine. A turbo improves the engine’s overall thermal efficiency by using waste heat that would otherwise be lost out of the tailpipe.

Turbochargers must “spool up” before they can deliver boost pressure. Peak turbo speeds range from 100,000 rpm to more than 250,000 rpm, depending on the application. But most turbos don’t make much boost pressure below 2,500 rpm. Peak boost pressure on passenger cars is typically between 9 psi to 11 psi, but performance engines run much more boost.

Because a turbo produces more cylinder pressure and heat, the need for following maintenance intervals is critical to the engine’s life. Today’s downsized turbocharged engines require higher-quality lubricants. Synthetic oils or synthetic blends that are “turbo approved” are recommended for turbo applications. Because turbos hold so much heat inside the turbine housing and conduct heat down the shaft into the center housing, oil can get too hot and oxidized and burn.

When mineral-based motor oil is used in a turbo engine, it can break down easier and harm the bearings and center shaft. Oxidized oil can form harmful carbon deposits on the shaft and bearings. The oil-supply lines to the turbo also need to be clear and free from sludge or obstructions. Adequate oil pressure is a must to keep the turbo lubricated. Low oil pressure, lack of oil or aeration can cause lubrication problems for the turbocharger. Consequently, if there is a failure due to lubrication, there is a great deal of labor involved to diagnose the issue to ensure all the oil-supply lines are clear of debris.about:blank

Late-model turbos are equipped with a water-cooled center housing to prevent oil oxidation and overheating. But some vehicles use a timer to allow the engine and turbo to cool before it shuts off. Some applications use an electric pump to keep the coolant flowing until the turbo has cooled sufficiently. If the turbo’s coolant lines are obstructed, or full of air because of a low coolant level, the shaft bearings may overheat.

Heat also may cause the turbine housing to crack and leak if it hasn’t had enough time to cool down. Dirty or clogged air filters can allow dirt and dust to be sucked into the compressor wheel, causing a gradual loss of turbo efficiency and boost pressure. Dirt will act like sandpaper on bearings and the turbine shaft, which will grind away at the clearances and cause a failure.

If the bearings or bushings are worn, the shaft may wobble, creating harmonic vibrations that can make it difficult to spool up and produce boost. Deposits that build up on the shaft or bearings can prevent the turbo from spinning freely. And if the shaft binds up, the turbo may seize altogether. The turbocharger is one of the greatest technologies ever invented, but it’s not immune to failure due to a lack of maintenance. Always remind your customers with turbocharged engines to use high-quality oils and to follow recommended maintenance intervals.

This article courtesy of Counterman.

You May Also Like

Fuel Pressure Diagnostic Service

Use a scan tool that can look at special direct fuel injection parameters and perform bidirectional tests.

Ever since the fuel pump was moved to the fuel tank, fuel pressure replaced the float height as a measure of fuel system health and performance. Checking the height of the float might have required some disassembly or special tools to bend the arms of the float.

When the shift was made to port or throttle body fuel injection, all a technician needed to diagnose a fuel problem was a set of “noid lights,” a fuel pressure gauge and maybe a multi-meter. Measuring the fuel pressure typically required checking the pressure at idle and under load. Most of the these tools can’t be used on the high pressure side of a direct-injection system because of higher pressures and changes in the injector location and technology. 

Battery Charging and Diagnostics

Here are six tips to use when diagnosing a vehicle with a dead battery. 

Diagnostic Strategies For Stop/Start Systems

This function of the power management system uses several modules to decide when the engine needs to stop and start.

How Extended Interval Oil Filters Have Improved

Over time, the oil filter can collect enough contaminants to become restricted.

Spark Plug Replacement

Here are some tips to follow when replacing a spark plug.

Other Posts

Ford 3.5L EcoBoost Turbocharger Oil Leaks

Ford has revised the service information for the inspection and pinpoint tests of the turbocharger and oil lines.

Oxygen Sensors And Catalyst Efficiency

Newer air/fuel ratio or wide-band sensors can detect a wide range of fuel conditions.

Smart Battery Management

Most modern systems will measure the internal resistance.

Understanding Underhood Parts for Hybrids

Anything that can happen to an ICE in a standard vehicle can happen to an ICE in a hybrid.