Porsche Active Motor Mounts -

Porsche Active Motor Mounts

Over the years, motor mounts have evolved from when they were just an item to mount the engine to the frame or unibody.

Whether you’re talking about a three-cylinder hatchback or a supercar, motor mounts have to keep vibrations away from the driver and keep the engine mounted to the frame. As engines and drivetrains have become quieter and more powerful, motor and transmission mount have had to become active or be able to change compression rates. 

The first innovation was the fluid-filled motor mount. As the engine put force on the mount, the fluid was transferred between chambers to change the compression rate of the mount. 

The next evolution was a system that could change the stiffness of the mount depending on the load on the engine. Such a mount can be relatively soft at idle to absorb the unwanted shakes produced by widely or unevenly spaced cylinder firings, then stiffen up at higher engine speeds and loads to limit unwanted engine motions.  It’s the best of both worlds, but it does require some type of external controls and inputs.

Most of these mounts used engine vacuum to adjust the stiffness of the mount. Early mounts had vacuum applied directly from the engine. Later mounts use a solenoid controlled by a pulse width modulated signal from the ECM to better control the valving. 

The greatest leap forward for engine mounts has been the magnetorheological fluid, which contains metal particles suspended in oil. When exposed to a magnetic field, the fluid changes viscosity. If you use an electromagnet, you can actively change the viscosity and dampenining characteristics in milliseconds. 

Porsche Active Drivetrain Mounts are filled with magnetorheological fluid. The mounts have two chambers, between which is an electromagnet.

At low engine speeds, the fluid flows freely to provide a more comfortable driving experience. As conditions change, so does the viscosity of the fluid. The control of the fluid is up to the ECM, but it is looking at a lot of inputs.

For example, if the driver is shifting gears it will change the stiffness of the mounts when the clutch pedal is depressed or the driver pulls on the paddles behind the wheel. If the driver is exiting a corner, it will change the viscosity of the two mounts independently to smoothly apply power. 

The behavior of the mounts changes if the driver selects a sport mode to give them more feedback.

You May Also Like

Multi-Link Front Suspensions

Why do some suspensions have so many ball joints? Here’s why.

In the 1960s, many domestic and import OEMs replaced kingpins with ball joints. The change helped to reduce maintenance and improve suspension geometry. By the 1970s, finding a light vehicle with kingpins was almost impossible. Today, you can commonly find suspensions with as many as five ball joints on a corner. These multi-link front suspension designs can be found on domestic and import nameplate vehicles from GM, Ford, Audi and Mercedes-Benz. 

BMW Driveshaft Q&A

Here are the top questions technicians ask about BMW driveshafts.

Tuning Adjustable Shocks and Struts

Explore adjustable shocks & struts, their functions, and proper adjustment techniques.

Air Ride Suspension Diagnostics

The key to understanding the embedded logic of air ride systems is using service information.

Brake Rotor FAQ

Here are the answers to our frequently asked questions regarding brake rotors.

Other Posts

Catalytic Converter Replacement

Converters must be certified and labeled with the correct codes that are stamped into the shell when replacing.

Integrated Wheel Ends

The leading cause of IWE failure is water finding its way into the vacuum lines under the hood and in the wheel well.

Axle Torque Procedures

Guessing the correct torque setting is a bad idea.

Protecting Carbon Fiber Wheels During Service

Carbon fiber wheels are so delicate, cleanliness is next to godliness when mounting and demounting them.