VIDEO: Understanding Control Arms -

VIDEO: Understanding Control Arms

Control arm replacements must match the original. This video is sponsored by ZF Aftermarket.

A control arm is the connection between the movement of the tires and the movement of the body. It is the intersection where weight transfer, steering and the contact patch come together.

When a vehicle goes around a corner, weight is transferred, and the body will move or lean. This changes the relationship of a control arm’s mounting points to the road. This shift changes the geometry and alignment angles of the suspension and contact patch of the tires.

When a car is making a right turn, the camber on the right corner can become more negative to optimize the contact patch. Toe angles can change to improve initial “turn in” to the corner, and caster can change to improve steering feel. If the geometry of the control arm is not correct, the vehicle can feel uncontrollable and make the driver feel unsure about their vehicle.

At both ends of a control arm are the pivot points. The bushings form the connection to the chassis or body. They are engineered to be the correct geometry and material stiffness to manage forces without transmitting road harshness to the occupants. They are also dynamic in their geometry. Manufacturers will mold different shapes and fluid-filled chambers into the bushings, this is so they deflect in a manner that improves the geometry of the suspension.

At the other end is a ball joint. It is the nexus point of the suspension, steering and chassis. A ball joint has three axes of rotation. They allow the wheel to change camber, caster, and toe to optimize the tire’s contact patch.

Ball joints have changed, OEMs now use joints with a full ball stud in an engineered polymer socket that is lubricated by specialty synthetic greases. The controlled friction levels between the ball and stud improve the steering feel and suspension movements. The polymer surface has elastic properties that can absorb shock better than a metal-on-metal joint.

For a full-ball polymer joint to work, the joint must be sealed against the elements and keep the lubricants inside. Therefore, there is no need to flush these joints with new grease because it is a sealed system that is engineered to last the 100K miles plus.

The materials and construction methods used to manufacture a control arm are critical to the vehicle’s structure. When a wheel meets an immovable object, control arms manage the forces of the impact. Engineers endlessly test how a suspension will take an impact. Control arms can direct and dissipate the forces so the structure of the chassis are not damaged, and the driver can retain control. Some control arms are designed to deform in specific areas. Other control arms are designed to be rigid and redirect force to a specific area or component so the energy can be absorbed.

When engineering a replacement control arm or even installing a new arm, it must match the original. The materials must match. If the original component was stamped steel, the replacement must be made of stamped steel. The same goes for aluminum and cast iron. This philosophy should also be applied to the bushings and ball joints.

Taking a chance on a low-quality control arm that might fit could mean you are altering the suspension’s geometry and even the performance in a collision.

This video is sponsored by ZF Aftermarket.

You May Also Like

Suspension Bushings: Role, Materials, and Wear Indicators

Regular inspection and timely replacement of worn bushings are crucial for optimal vehicle performance and safety.

Suspension bushings are vital components that connect various suspension parts such as control arms, sway bars, and shock absorbers, providing cushioning and absorbing vibrations for a smooth ride. This video covers their role in reducing noise and vibrations, maintaining proper wheel alignment, and improving handling. It explains the differences between rubber, polyurethane, and metal bushings, and highlights signs of wear like excessive movement, cracks, and unusual noises. Regular inspection and timely replacement of worn bushings are crucial for optimal vehicle performance and safety.

Randy Breaux, Group President, GPC North America, Talks to AMN Drivetime

At NAPA, “Breaux Knows” business relationships, ABCs to avoid, and serving the automotive professional.

Serpentine Belt and Drive System Maintenance

Properly maintaining the entire drive system prevents premature belt wear and system failure, ensuring customer satisfaction and vehicle reliability.

EGR Systems: Understanding Exhaust Gas Recirculation

Learn how it works, its history, and its impact on both performance and the environment.

Advanced Cooling System Technologies: Hybrid & EVs

Learn how to keep your hybrid or electric vehicle running smoothly and efficiently.

Other Posts
Do EVs Require Special Brake Pads?

Proper brake pad selection is crucial for EVs to ensure consistent stopping power and long pad life.

Five Tips for your Next Wheel Bearing Job

These practical tips are designed to save you time and frustration, ensuring a smooth, noise-free outcome for your customers.

Performance Upgrades for Drivetrains

Whether you’re increasing power or making suspension modifications, drivetrain upgrades will be next in line.

Educate Your Future Customers Utilizing AI

Discover how to generate quick, accurate explanations for repair orders and estimates, boosting your credibility and customer trust.